nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2020, 04, v.37;No.134 15-21
基于机器学习的股票预测研究综述
基金项目(Foundation): 河北省自然科学基金项目(F2019207061)
邮箱(Email):
DOI: 10.16191/j.cnki.hbkx.2020.04.003
摘要:

越来越多的学者投入到股市预测的研究中,探求股市发展规律,也不断有新的科学技术应用到股市预测,以求能够预先掌握其发展趋势。本文对各种股票预测方法研究进行综述。介绍了基于传统时间序列、隐马尔可夫模型等传统预测模型,以及基于机器学习、深度学习的决策树、神经网络、组合模型等新型创新模型,并介绍了各模型的优缺点,总结了基于神经网络的股票预测模型的基本步骤。最后,对股票预测研究方法做出总结与展望。

Abstract:

More and more scholars have been involved in the research of stock market prediction, exploring the law of stock market development, and constantly applying new science and technology to stock market prediction, in order to be able to grasp its development trend in advance. This paper reviews the research on various stock forecasting methods. This paper introduces the traditional forecasting models based on traditional time series and hidden Markov model, as well as the new innovative models such as decision tree, neural network and combination model based on machine learning and deep learning. It also introduces the advantages and disadvantages of each model, and summarizes the basic steps of stock forecasting model based on neural network. Finally, the research methods of stock forecasting are summarized and prospected.

参考文献

[1] 邢伟琛.大数据环境下的股票预测探究[J].中国商论,2020,(03):31-32.

[2] Kuo R J,Lee L C and Lee C F (1996),Integration of Artificial NN and Fuzzy Delphi for Stock market forecasting,IEEE International Conference on Systems,Man,and Cybernetics,Vol.2,pp.1073-1078.

[3] Hassan M R,Nath B.Stock market forecasting using hidden Markov model:a new approach[C].intelligent systems design and applications,2005,8(5):192-196.

[4] Cui X,Shang W,Jiang F,et al.Stock Index Forecasting by Hidden Markov Models with Trends Recognition[C].international conference on big data,2019,12(01),5292-5297.

[5] LuoB ,Chen Y ,Jiang W .Stock Market Forecasting Algorithm Based on Improved Neural Network[C]// Eighth International Conference on Measuring Technology & Mechatronics Automation.IEEE,2016,pp.628-631,doi:10.1109/ICMTMA.2016.154.

[6] 黄同愿,陈芳芳.基于SVM股票价格预测的核函数应用研究[J].重庆理工大学学报(自然科学),2016,30(02):89-94.

[7] 史书真.股价时间序列的分析与预测研究[D].大连理工大学,2013.

[8] 王振龙.时间序列分析[M].北京:中国统计出版社,2006

[9] 赵洪科,吴李康,李徵,张兮,刘淇,陈恩红.基于深度神经网络结构的互联网金融市场动态预测[J].计算机研究与发展,2019,56(08):1621-1631.

[10] Ye,Tian.Stock forecasting method based on wavelet analysis and ARIMA-SVR model[C]// International Conference on Information Management.IEEE,2017:102-106,doi:10.1109/INFOMAN.2017.7950355..

[11] 郝博乾.基于时间序列分析的股票预测模型研究[D].电子科技大学,2011.

[12] O.A.Bayuk,D.V.Berzin.Algorithm for Forecasting Stock Prices of Russian Banks[J].2019 Twelfth International Conference "Management of large-scale system development" (MLSD),Moscow,Russia,2019,1-3,doi:10.1109/MLSD.2019.8910987.

[13] Cleveland R B,Cleveland W S,McRae J E,et al.STL:A seasonal-trend decomposition[J].Journal of Official Statistics,1990,6.1:3-73.

[14] Das,Samarjit.Time Series Analysis[M].Princeton,NJ:Princeton University Press,1994.

[15] Douglas C.Montgomery,John S.Gardiner,Lynwood A.Johnson.Forecasting and Time Series Analysis[M].New York:McGraw-Hill,1990.

[16] Engle R F .Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of U.K.Inflation[J].Econometrica,1981,50(4):987-1008.

[17] BollerslevT.Generalized autoregressive conditional heteros-kedasticity[J].Journal of Econometrics,1986,31(3):307-327.

[18] BahdanauD,Cho K,Bengio Y.Neural Machine Translation by Jointly Learning to Align and Translate[J].Computer ence,2014.

[19] R.F.Engle,Autoregressive conditional heteroscedasticity with estimates of variance of United Kingdom Inflation.Econometrica,1982,(50),987-1008.

[20] M.M.R.Majumder,M.I.Hossain and M.K.Hasan,"Indices prediction of Bangladeshi stock by using time series forecasting and performance analysis," 2019 International Conference on Electrical,Computer and Communication Engineering (ECCE),Cox'sBazar,Bangladesh,2019,2(1),pp.1-5,doi:10.1109/ECACE.2019.8679480.

[21] 何永沛.ARMA模型参数估计算法改进及在股票预测中的应用[J].重庆工学院学报(自然科学版),2009,23(02):109-112.

[22] 黄冉.基于隐马尔科夫模型(HMM)的股票价格预测分析[D].青岛大学,2015.

[23] Hamilton J D.A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle[J].Econometrica,1989,57(2):357-384.

[24] Zhang D,Jiang Q.and Xin L.Application of Neural Networks in Financial Data Mining [J].International Journal of Computational Intelligence,2004,1(2):116-119.

[25] TomohiroTakagi,MichioSugeno.Fuzzy Identification of System and its Application to Modeling and Control.Trans action on Systems,Man,andCybernetics.1985,15(1):116-132.

[26] Vapnik V N .The Nature of Statistical Learning Theory[M]// The nature of statistical learning theory.Springer,1995.

[27] 胡蓉.多输出支持向量回归及其在股指预测中的应用[J].计算机技术与发展,2007,(10):226-229.

[28] 黄朋朋,韩伟力.基于支持向量机的股价反转点预测[J].计算机系统应用,2010,19(09):214-218.

[29] JaiwangG ,Jeatrakul P .A forecast model for stock trading using support vector machine[C]// 2016 International Computer Science and Engineering Conference (ICSEC).IEEE,2017,1-6,doi:10.1109/ICSEC.2016.7859923.

[30] S.S.Panigrahi,J.K.Mantri.A text based Decision Tree model for stock market forecasting[J].2015 International Conference on Green Computing and Internet of Things (ICGCIoT),Noida,2015:405-411,doi:10.1109/ICGCIoT.2015.7380497.

[31] 王燕,郭元凯.改进的XGBoost模型在股票预测中的应用[J].计算机工程与应用,2019,55(20):202-207.

[32] Andersson J O.The new foundations of evolution:on the tree of life[J].Quarterly Review of Biology,2011,60(3):114-115.

[33] HendrikxJ,MurphyM,Onslow T.Classification trees as a tool for operational avalanche forecasting on the Seward Highway,Alaska[J].Cold Regions Science & Technology,2014,97:113-120.

[34] 王禹,陈德运,唐远新.基于Cart决策树与boosting方法的股票预测[J].哈尔滨理工大学学报,2019,24(06):98-103.

[35] 张潇,韦增欣.随机森林在股票趋势预测中的应用[J].中国管理信息化,2018,21(03):120-123.

[36] ShenW ,Xing M .Stock Index Forecast with Back Propagation Neural Network Optimized by Genetic Algorithm[C]// International Conference on Information & Computing Science.IEEE,2009,pp.376-379,doi:10.1109/ICIC.2009.441.

[37] Yu Y,Wang S,Zhang L.Stock price forecasting based on BP neural network model of network public opinion[C]// International Conference on Image.IEEE,2017,pp.1058-1062,doi:10.1109/ICIVC.2017.7984716.

[38] 綦方中,林少倩,俞婷婷.基于PCA和IFOA-BP神经网络的股价预测模型[J].计算机应用与软件,2020,37(01):116-121+156.

[39] 蔺晓.基于卷积神经网络的股票交易反转点与异常点检测[D].华中科技大学,2016.

[40] BengioY.Learning Deep Architectures for AI[J].Foundations & Trends in Machine Learning,2009,2(1):1-127.

[41] 王宇轩.基于卷积神经网络的股票预测[D].天津工业大学,2019.

[42] 张贵勇.改进的卷积神经网络在金融预测中的应用研究[D].郑州大学,2016.

[43] 包振山,郭俊南,谢源,张文博.基于LSTM-GA的股票价格涨跌预测模型[J].计算机科学,2020,47(S1):467-473.

[44] 周阳.基于LSTM模型的上证综指价格预测研究[D].南京邮电大学,2019.

[45] 王霄鹏.基于LSTM改进模型的股票预测研究[D].重庆理工大学,2020.

[46] FREUND Y,SCHAPIRE.A decision-theoretic generalization of on-line learning and an application to boosting[J].Journal of Computer and System Sciences,1997,55(1):119-139.

[47] 宁昱博,张玉军.LSTM-Adaboost股价预测模型[J].辽宁科技大学学报,2019,42(05):383-388.

[48] Kumar S ,Ningombam D .Short-Term Forecasting of Stock Prices Using Long Short Term Memory[C]// 2018 International Conference on Information Technology (ICIT).2018,12(01),182-186.10.1109/ICIT.2018.00046

[49] Moody J ,Darken C .Fast Learning in Networks of Locally-Tuned Processing Units[J].Neural Computation,1989,1(2):281-294.

[50] 马东宇.基于Gaussian型RBF神经网络的函数逼近与应用[D].中南大学,2011.

[51] 阚子良.基于改进机器学习方法的股票预测研究[D].长春理工大学,2019.

[52] Bates J M,Granger C W J.“Combining of forecasts” [J].Operations Research Quarterly,1969,20(40):451-468.

[53] Weihong Wang,ShuangshuangNie.The Performance of Several Combining Forecasts for Stock Index[C]// International Seminar on Future Information Technology & Management Engineering.IEEE,2009:450-455,doi:10.1109/FITME.2008.42.

[54] 朱嘉瑜,叶海燕,高鹰.基于隐马尔可夫模型的股票价格预测组合模型[J].计算机工程与设计,2009,30(21):4945-4948.

[55] SachdevA ,Sharma V .Stock Forecasting Model Based on Combined Fuzzy Time Series and Genetic Algorithm[C]// International Conference on Computational Intelligence & Communication Networks.IEEE,2016:1303-1307,doi:10.1109/CICN.2015.250.

[56] Weihong Wang,ShuangshuangNie.The Performance of Several Combining Forecasts for Stock Index[C]// International Seminar on Future Information Technology & Management Engineering.IEEE,2009:450-455,doi:10.1109/FITME.2008.42.

[57] 王绍泽.隐马尔可夫模型在股市中的应用[D].大连理工大学,2019.

[58] 张斌.基于回声状态网络的短期股价预测模型[J].计算机应用与软件,2017,34(05):268-272+333.

基本信息:

DOI:10.16191/j.cnki.hbkx.2020.04.003

中图分类号:F832.51;TP181

引用信息:

[1]张倩倩,林天华,祁旭阳等.基于机器学习的股票预测研究综述[J].河北省科学院学报,2020,37(04):15-21.DOI:10.16191/j.cnki.hbkx.2020.04.003.

基金信息:

河北省自然科学基金项目(F2019207061)

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文